Source code for ontolearn.learning_problem

# -----------------------------------------------------------------------------
# MIT License
#
# Copyright (c) 2024 Ontolearn Team
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# -----------------------------------------------------------------------------

"""Learning problem in Ontolearn."""
import logging
from typing import Set, Optional, TYPE_CHECKING

if TYPE_CHECKING:
    from ontolearn.knowledge_base import KnowledgeBase
from ontolearn.abstracts import AbstractLearningProblem, EncodedLearningProblem, EncodedPosNegLPStandardKind
from owlapy.owl_individual import OWLNamedIndividual

logger = logging.getLogger(__name__)


[docs] class EncodedPosNegLPStandard(EncodedPosNegLPStandardKind): """Encoded learning problem standard. Attributes: kb_pos (set): Positive examples. kb_neg (set): Negative examples. kb_diff (set): kb_all - (kb_pos + kb_neg). kb_all (set): All examples/ all individuals set. """ __slots__ = 'kb_pos', 'kb_neg', 'kb_diff', 'kb_all' kb_pos: set kb_neg: set kb_diff: set kb_all: set def __init__(self, kb_pos, kb_neg, kb_diff, kb_all): """Create a new instance of EncodedPosNegLPStandard. Args: kb_pos (set): Positive examples. kb_neg (set): Negative examples. kb_diff (set): kb_all - (kb_pos + kb_neg). kb_all (set): All examples/ all individuals set. """ self.kb_pos = kb_pos self.kb_neg = kb_neg self.kb_diff = kb_diff self.kb_all = kb_all
[docs] class PosNegLPStandard(AbstractLearningProblem): """Positive-Negative learning problem standard. Attributes: pos: Positive examples. neg: Negative examples. all: All examples. """ __slots__ = 'pos', 'neg', 'all' def __init__(self, pos: Set[OWLNamedIndividual], neg: Set[OWLNamedIndividual], all_instances: Optional[Set[OWLNamedIndividual]] = None): """ Determine the learning problem and initialize the search. 1) Convert the string representation of an individuals into the owlready2 representation. 2) Sample negative examples if necessary. 3) Initialize the root and search tree. Args: pos: Positive examples. neg: Negative examples. all_instances: All examples. """ assert isinstance(pos, set) and isinstance(neg, set) self.pos = frozenset(pos) self.neg = frozenset(neg) if all_instances is None: self.all = None else: self.all = frozenset(all_instances)
[docs] def encode_kb(self, knowledge_base: 'KnowledgeBase') -> EncodedPosNegLPStandard: return knowledge_base.encode_learning_problem(self)
[docs] class EncodedPosNegUndLP(EncodedLearningProblem): """To be implemented.""" ...
# XXX: TODO
[docs] class PosNegUndLP(AbstractLearningProblem): """To be implemented.""" ...
# XXX: TODO