ontolearn.tentris
Tentris representations.
Attributes
Classes
Encoded Abstract learning problem following pos-neg lp standard. |
|
Explicitly declare the attributes that should be returned by the evaluate_concept method of a KnowledgeBase. |
|
Representation of an OWL knowledge base in Ontolearn. |
Module Contents
- ontolearn.tentris.logger
- class ontolearn.tentris.EncodedPosNegLPStandardTentris(id)
Bases:
ontolearn.abstracts.EncodedPosNegLPStandardKind
Encoded Abstract learning problem following pos-neg lp standard.
- __slots__ = 'id'
- id
- __repr__()
- class ontolearn.tentris.TentrisOntology(path: str, endpoint_url: str, timeout: float)
Bases:
owlapy.owl_ontology.OWLOntology
- __slots__ = ('_path', '_endpoint_url', '_backing_mgr', '_backing_onto', '_endpoint_timeout')
- classes_in_signature() Iterable[owlapy.class_expression.OWLClass]
- data_properties_in_signature() Iterable[owlapy.owl_property.OWLDataProperty]
- object_properties_in_signature() Iterable[owlapy.owl_property.OWLObjectProperty]
- individuals_in_signature() Iterable[owlapy.owl_individual.OWLNamedIndividual]
- abstract data_property_range_axioms(property: owlapy.owl_property.OWLDataProperty) Iterable[owlapy.owl_axiom.OWLDataPropertyRangeAxiom]
- data_property_domain_axioms(property: owlapy.owl_property.OWLDataProperty) Iterable[owlapy.owl_axiom.OWLDataPropertyDomainAxiom]
- object_property_domain_axioms(property: owlapy.owl_property.OWLObjectProperty) Iterable[owlapy.owl_axiom.OWLObjectPropertyDomainAxiom]
- object_property_range_axioms(property: owlapy.owl_property.OWLObjectProperty) Iterable[owlapy.owl_axiom.OWLObjectPropertyRangeAxiom]
- abstract get_owl_ontology_manager() owlapy.owl_ontology._M
- abstract get_ontology_id() owlapy.owl_ontology.OWLOntologyID
- __eq__(other)
- __hash__()
- __repr__()
- class ontolearn.tentris.TentrisReasoner(ontology: TentrisOntology)
Bases:
ontolearn.base.ext.OWLReasonerEx
- __slots__ = ('_ontology', '_backing_reasoner')
- abstract data_property_domains(pe: owlapy.owl_property.OWLDataProperty, direct: bool = False) Iterable[owlapy.class_expression.OWLClass]
- object_property_domains(pe: owlapy.owl_property.OWLObjectProperty, direct: bool = False) Iterable[owlapy.class_expression.OWLClass]
- object_property_ranges(pe: owlapy.owl_property.OWLObjectProperty, direct: bool = False) Iterable[owlapy.class_expression.OWLClass]
- abstract equivalent_classes(ce: owlapy.class_expression.OWLClassExpression, only_named: bool = True) Iterable[owlapy.class_expression.OWLClassExpression]
- abstract data_property_values(ind: owlapy.owl_individual.OWLNamedIndividual, pe: owlapy.owl_property.OWLDataProperty) Iterable[owlapy.owl_literal.OWLLiteral]
- abstract object_property_values(ind: owlapy.owl_individual.OWLNamedIndividual, pe: owlapy.owl_property.OWLObjectPropertyExpression) Iterable[owlapy.owl_individual.OWLNamedIndividual]
- abstract flush() None
- instances(ce: owlapy.class_expression.OWLClassExpression, direct: bool = False) Iterable[owlapy.owl_individual.OWLNamedIndividual]
- sub_classes(ce: owlapy.class_expression.OWLClassExpression, direct: bool = False, only_named: bool = True) Iterable[owlapy.class_expression.OWLClassExpression]
- sub_data_properties(dp: owlapy.owl_property.OWLDataProperty, direct: bool = False) Iterable[owlapy.owl_property.OWLDataProperty]
- sub_object_properties(op: owlapy.owl_property.OWLObjectPropertyExpression, direct: bool = False) Iterable[owlapy.owl_property.OWLObjectPropertyExpression]
- abstract types(ind: owlapy.owl_individual.OWLNamedIndividual, direct: bool = False) Iterable[owlapy.class_expression.OWLClass]
- get_root_ontology() TentrisOntology
- abstract super_classes(ce: owlapy.class_expression.OWLClassExpression, direct: bool = False, only_named: bool = True) Iterable[owlapy.class_expression.OWLClassExpression]
- class ontolearn.tentris.EvaluatedConceptTentris
Bases:
ontolearn.search.EvaluatedConcept
Explicitly declare the attributes that should be returned by the evaluate_concept method of a KnowledgeBase.
This way, Python uses a more efficient way to store the instance attributes, which can significantly reduce the memory usage.
- __slots__ = ()
- property inds
- class ontolearn.tentris.TentrisKnowledgeBase(path: str, *, length_metric_factory: ontolearn.utils.Factory[[], ontolearn.base.owl.utils.OWLClassExpressionLengthMetric] | None = None, length_metric: ontolearn.base.owl.utils.OWLClassExpressionLengthMetric | None = None, individuals_cache_size=128)
Bases:
ontolearn.knowledge_base.KnowledgeBase
Representation of an OWL knowledge base in Ontolearn.
- Parameters:
path – Path to an ontology file that is to be loaded.
ontologymanager_factory – Factory that creates an ontology manager to be used to load the file.
ontology – OWL ontology object.
reasoner_factory – Factory that creates a reasoner to reason about the ontology.
reasoner – reasoner Over the ontology.
length_metric_factory – See
length_metric
.length_metric – Length metric that is used in calculation of class expression lengths.
individuals_cache_size – How many individuals of class expressions to cache.
backend_store – Whether to sync the world to backend store. reasoner of this object, if you enter a reasoner using :arg:`reasoner_factory` or :arg:`reasoner` argument it will override this setting.
include_implicit_individuals – Whether to identify and consider instances which are not set as OWL Named Individuals (does not contain this type) as individuals.
- generator
Instance of concept generator.
- Type:
- path
Path of the ontology file.
- Type:
str
- use_individuals_cache
Whether to use individuals cache to store individuals for method efficiency.
- Type:
bool
- __slots__ = ('endpoint_url', 'endpoint_timeout', 'async_client', 'tasks', '_total_req', '_current_req')
- endpoint_url: str
- endpoint_timeout: float
- path
- tasks = 8
- async_client
- use_individuals_cache
- abstract encode_learning_problem(lp: AbstractLearningProblem)
Provides the encoded learning problem (lp), i.e. the class containing the set of OWLNamedIndividuals as follows:
kb_pos –> the positive examples set, kb_neg –> the negative examples set, kb_all –> all lp individuals / all individuals set, kb_diff –> kb_all - (kb_pos + kb_neg).
Note
Simple access of the learning problem individuals divided in respective sets. You will need the encoded learning problem to use the method evaluate_concept of this class.
- Parameters:
lp (PosNegLPStandard) – The learning problem.
- Returns:
The encoded learning problem.
- Return type:
- evaluate_concept(concept: owlapy.class_expression.OWLClassExpression, quality_func: AbstractScorer, encoded_learning_problem: EncodedPosNegLPStandardTentris) EvaluatedConcept
Evaluates a concept by using the encoded learning problem examples, in terms of Accuracy or F1-score.
Note
This method is useful to tell the quality (e.q) of a generated concept by the concept learners, to get the set of individuals (e.inds) that are classified by this concept and the amount of them (e.ic).
- Parameters:
concept – The concept to be evaluated.
quality_func – Quality measurement in terms of Accuracy or F1-score.
encoded_learning_problem – The encoded learning problem.
- Returns:
The evaluated concept.
- async evaluate_concept_async(concept: owlapy.class_expression.OWLClassExpression, quality_func: AbstractScorer, encoded_learning_problem: EncodedPosNegLPStandardTentris) EvaluatedConcept